<u>Fiche Méthodologie n°2 – Les Conversions numériques</u> des aires et des volumes

I) Tableau de conversions pour les aires et les volumes

• Dans la fiche Méthode n°1, on a vu qu'on pouvait établir un *tableau de conversions pour toutes les unités disponibles* en sciences physiques, notamment :

k (kilo)	h (hecto)	da (déca)	d (déci)	c (centi)	m (milli)

- Mais cela ne s'arrête pas là : il existe aussi, dans la vie courante (mais dans les sciences aussi ...), la notion de *surface* et de *volume*.
- Une surface représente une <u>étendue plate</u> et se mesure en m^2 (<u>mètres carré</u>), car on a besoin de 2 longueurs pour l'exprimer (c'est pourquoi on appelle cela <u>2D</u>: 2 dimensions).
- Un volume représente une <u>étendue dans l'espace</u> et se mesure en m^3 (<u>mètres cube</u>), car on a besoin de 3 longueurs pour l'exprimer (c'est pourquoi on appelle cela <u>3D</u>: 3 dimensions).

• Par exemple:

En 2D	<u>En 3D</u>
Un cercle ou un carré sont plats : on peut les dessiner sur une feuille, par exemple	On ne peut plus dessiner les volumes sur une feuille, ou alors, il faut faire comprendre qu'il y a une "profondeur" du volume à l'aide de pointillés.

• Heureusement, les conversions de surface ou de volumes ne se feront qu'en m^2 ou m^3 , jamais avec d'autres unités (par exemple, les Volts cube ou les Ampères carrés n'existent pas !).

1) Pour les aires

- Prenons par exemple un carré d' $1 m^2$: cela signifie que c'est un carré dont l'arête est de longueur 1 m, mais si on veut maintenant imaginer un carré d'arête 10 m, quelle sera sa surface ? $10 \times 10 = 100 m^2$. Ce qui veut dire que lorsqu'on multiplie l'arête par 10, la surface, elle est multipliée par 100!
- Le tableau de conversion va donc devoir présenter <u>2 cases</u> (les 2 "0" du 100 précédent) à chaque fois qu'on change de sous ou sur-unité du mètre, comme suit :

kı	n^2	hm ²		dam²		n	i^2	dm^2		cm ²		mm ²	
					1	0	0						
	1	0	0	0	0	0	0,						
			0,	0	0	4	7	9					

• <u>Exemples d'utilisation</u>:

- Reprenons notre exemple du carré précédent : son côté est de 10 m (donc 1 dam), donc son aire est 100 m², équivalente à 1 dam²!
- 1 km^2 (on place le 1 dans la 1ère case des km^2 , la plus à droite, et on complète avec des 0 derrière, en rouge) = 1000000 m^2 .
- $47.9 \, m^2$ (on place le 7 sur la 1ère case des m^2 , car 7 unités, 4 devant puis 9 derrière, et on complète avec des 0 devant le 4, en bleu) = $0.00479 \, hm^2$.

2) **Pour les volumes**

- Prenons par exemple un cube d' $1 m^3$: cela signifie que c'est un cube dont l'arête est de longueur 1 m, mais si on veut maintenant imaginer un carré d'arête 10 m, quel sera son volume ? $10 \times 10 \times 10 = 1000 m^3$. Ce qui veut dire que lorsqu'on multiplie l'arête par 10, la surface, elle est multipliée par 1000!
- Le tableau de conversion va donc devoir présenter <u>3 cases</u> (les 3 "0" du 1000 précédent) à chaque fois qu'on change de sous ou sur-unité du mètre, comme suit :

km³		hm ³		dam³		m^3			dm^3			cm ³			mm ³		•		
							1	0	0	0									
			1	8	0	0	0	0	0	0,									
										0,	0	0	0	0	4	2	5		

• <u>Exemples d'utilisation</u>:

- Reprenons notre exemple du cube précédent : son côté est de 10 m (donc 1 dam), donc son volume est 1000 m³, équivalente à 1 dam³!
- 18 hm^3 (on place le 8 dans la 1ère case des hm^3 , la plus à droite, et on complète avec des 0 derrière, en rouge) = 18000000 m^3 .
- 42.5 cm^3 (on place le 2 sur la 1ère case des cm^3 , car 2 unités, 4 et 5 devant et derrière, et on complète avec des 0 devant, en bleu) = 0.0000425 m^3 .

II) Expression des volumes en Litres (L)

• La dernière difficulté, en chimie notamment, c'est que les volumes sont souvent aussi mesurés en <u>litres</u> (L)! Mais comment réaliser une conversion entre m^3 et L?

A retenir!

<u>Equivalence des volumes</u> : le litre est défini comme étant l'équivalent volumique d' $1 dm^3$. $1 L = 1 dm^3$

• Si on veut rester dans des sous ou sur-unités du Litre, alors, une conversion fonctionne comme dans la fiche Méthode n°1 :

kL	hL	daL	L	dL	cL	mL

• Faire une conversion entre m^3 et L revient à combiner le tableau précédent des L et le tableau des volumes en m^3 , et il faut <u>mettre en correspondance le L et les dm^3 </u>, (en jaune ci-dessous) comme suit :

km ³			hm³		dam³		m^3			dm ³			cm ³			mm ³			
										kL	hL	daL	L	dL	cL	mL			
										1	0	0	0,						
							0,	0	0	0	0	0	0	2	7				
											0,	0	0	0	0	0	9	6	
1	9	2	0	0	0	0	0	0	0	0	0	0	0,						

• *Exemples d'utilisation* :

- $1 m^3$ (on place le 1 dans la 1ère case des m^3 , la plus à droite) et on complète avec des 0 derrière, en rouge) = 1000 L.
- 27 cL (on place le 7 sur la case des cL et on complète avec des 0 devant, en bleu) = $0.00000027 dam^3$.
- 0.96 cm^3 (on place le 0 sur la 1ère case des cm^3 , la plus à droite et on complète avec des 0 devant, en vert) = 0.0000096 hL.
- 19.2 km^3 (on place le 9 sur la 1ère case des km^3 , la plus à droite et on complète avec des 0 derrière, en orange) = 19200000000000 L!(mais cela n'est pas très judicieux de faire cette conversion!)
- En chimie notamment, la partie la plus utile du tableau précédent concerne les <u>petits</u> <u>volumes</u> (encadré), car en laboratoire, on ne manipule pas de grandes quantités de liquides, ou de gaz! C'est donc cette partie du tableau qu'il faut bien maîtriser entre le *cm*³ (= 1mL) et le *m*³ (= 1000 L).

III) <u>Un peu d'entraînement ...</u>

1. En utilisant les tableaux ci-dessous (les refaire si exercice fait sur feuille libre) pour y placer les nombres à convertir, réaliser les conversions suivantes en faisant apparaître la virgule finale.

On rajoute en jaune, les 0 nécessaires DEVANT le nombre de départ, et en rose, les 0 nécessaires DERRIERE le nombre de départ ...

kı	n^2	hr	n^2	da	m^2	m	ι^2	dı	n^2	cm ²		mi	m^2
					0,	0	0	0	0	2	3	0	
						1	9,	8	0	0	0	0	0
	0,	0	0	0	0	0	0	0	8	7	0		
			0	0	0	0	0,	0	9	8			
		1	7	6	0	0	0	0	0,				
							0	0	4	7	8,		
			0	0	0	7	4	0	0,				
	0,	0	0	0	5	7	5	0	0	0	0	0	0

km³		hm³			dam	3		m^3			dm ³			cm ³		mm ³		
									kL	hL	daL	L	dL	cL	mL			
									0	0	0	8	7	0	0,			
			0,	0	0	0	0	0	0	0	4	3						
												0,	0	0	0	0	1	0
									2	7	0	0,						
									0	5	8	8	0,					
									0,	0	3	9	0	0	0			
						0	0	0	0	5	8	0	0	0	0,			
												0	0	0	7,	5		
												0,	1	7	3			
					1	0	7	0	0	0	0	0,						
			0,	0	5	2	0	8	0	0								
								7	0	0	0	0,						
						0,	0	0	0	0	0	0	3	8				
			0	2	3	0	0	0	0	0	0	0	0,					
									7,	0	4							
											4	7,	5	0	0	0	0	0

a) 23.0 cm^2 $= 0.000023 \ dam^2$ m) $17.3 \text{ cL} = 0.173 \text{ dm}^3$ n) $1760 \, dam^2 = 17600000 \, dm^2$ b) $0.0087 \, \text{m}^3$ $= 8700 \text{ cm}^3$ o) $0.0478 \text{ m}^2 = 478 \text{ cm}^2$ c) $198000000 \text{ mm}^2 = 19.8 \text{ m}^2$ p) $10.7 \, dam^3 = 10700000 \, dm^3$ d) 43 dm^3 $= 0.000000043 \text{ hm}^3$ e) 870 cm^2 $= 0.000000087 \text{ km}^2$ q) $520800 \text{ hL} = 0.05208 \text{ hm}^3$ r) $0.0074 \text{ hm}^2 = 7400 \text{ dm}^2$ $f) 10 \text{ mm}^3$ $= 0.00001 dm^3$ s) $70 \text{ m}^3 = 70000 \text{ L}$ g) 27 hL= 2700 Lh) 0.588 m^3 t) $0.00038 \text{ kL} = 0.00000038 \text{ dam}^3$ = 5880 dLi) 39000 mL $= 0.039 \text{ m}^3$ u) $0.23 \text{ hm}^3 = 23000000000 \text{ dL}$ i) $0.00058 \, dam^3$ $= 580000 \text{ cm}^3$ v) $704 daL = 7.04 m^3$ w) $47500000 \text{ mm}^3 = 47.5 \text{ L}$ k) 0.0075 L $= 7.5 \, mL$ x) $5750000000 \text{ mm}^2 = 0.000575 \text{ km}^2$ 1) $0.0000098 \text{ hm}^2 = 0.098 \text{ m}^2$

2. Quelles conversions vous paraissent elles utiles et judicieuses ? Justifier.

On rappelle que pour être utile et judicieuse (donc qu'on ait une bonne raison de la faire), une conversion doit présenter à la fin un nombre plus facile à lire et à manipuler : il doit être écrit avec moins de chiffres qu'au départ, et éventuellement, être plus grand que 1 (car nous sommes plus à l'aise avec).

Dans ces conditions:

- b) plutôt judicieuse : résultat à 4 chiffres contre 5 au départ.
- c) évidemment judicieuse : résultat à 3 chiffres contre 8 au départ !
- h) plutôt judicieuse : résultat > 1, plus facile à mentaliser
- 1) évidemment judicieuse : résultat à 4 chiffres contre 8 au départ !
- o) judicieuse : résultat à 3 chiffres contre 5 au départ
- r) plutôt judicieuse car résultat > 1
- w) évidemment judicieuse : résultat à 3 chiffres contre 8 au départ !